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ABSTRACT

i
Integral formulas are derived for the pressurecorrelation and mean square fluctuating pressure

Jl _p2_TM owing to the interaction of shear layers (i.e., planes of high mean shear sepa-

' i rating regions of uniform, but different, mean velocity) with turbulence. Results,for a single

-"shear layer, assumingisotroplc turbulence, indicate that in the far field (i. e., at distances

from the shear layer large in c_.,_parlsonwith the correlation length of the turbulence)

l _p2_TM CSacaysas the inverse fourth power of distance from the shear layer. Departure from

isotropy, for a given mean kinetic energy of the turbulence, decreasesthe near field value

1
of _p2,bTM, but increasesthe far field value. For the double shear layer it is shown that

I if the distance between the shear layers is large in comparisonwith the correlation length

I of the turbulence, the resulting value of _P2_TM is o superpositionof the effects of Sheshear
layers acting independently. Otherwise, interaction between the shear layers must be con-

[ sidered. These resultsare used to obtain order-of-magnitude estimates fat the mean square

wall pressurefluctuations in a turbulent boundary layer. These estimates show reasonably

[
close agreement with other published results.

[

i .
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i 1.0 INTRODUCTION

l The problem of pressurefluctuations in homogeneous, isotropic turbulence was

first considered by _telsenberg1 and Batchelor 2. The effect of turbulence-mean

J . 3flow interactions on turbulent pressurefluctuations was first studied by KraJchnan ,

' I who considered the interaction between a uniform mean shearand homogeneous,

isotroplc turbulence, and compared the result, to the effects of "turbulence-

I . . . 4,5,6, 7
turbulence" interaction. Su_equent investigations have been concerned

mainly with pressur_fluctuations owing to boundary layer turbuience. The

resultsof the work on boundary layer flows indicate that it is the turbulence-

l
mean shear interaction which gives the majorcontribution to the pressurefluc-

I tuations.

In the theoretical analysis which follows, the problem of pressurefluctuations

owing to the presenceof skear layers in homogeneousturbulence is ,.onsldered,

I with emphasison the turbulence-mean shear contribution. The shear layers are

I taken to be planesof high mean shear which separate regions of uniform, but '_

different, mean velocity. Flow conditions which can be approximated by one or

more shear layers are found in the region immediately downstreamfrom a rear-

I ward facing step in channel flow, the region near the exit of a jet, the immediate

downstream area in the wake of o projectile, and in a boundary layer. Also, areas

I of strong wind shear separating adjacent regions of greatly differing wind velocity

are frequently found ;n the atmosphere, and are usually associated with

significant atmospheric turbulence.

[
I!

I !
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i In the following sections the formulas for the pressure correlation and the mean

, square fluctuating pressureowing to turbulence-mean shear interaction ore derived,
!

and are applied to the case of the single shear layer, and also to the case of the

]. double shear layer. The effect of anisotropy of the turbulence is discussed. In

_ the final section it is shownhow the resultsobtained here con be used to give rough

order-of-magnitude estimates of the wall pressurefluctuations in a turbulent boundary

1. layer.

2
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I
i 2.0 GENERAL THEORY - SINGLE SHEAR LAYER

The motion of an incompressibleviscousfluid is governed by the Nav;er-Stokes

I equations:

I 8u. 8u.

. I _p VzSt + u. _ + - = (2.1)j 8x_ pax. v u.;

| J

m au. = o, (2 2)
_X.

I

I where ui is the velocity, p the pressure, p the density, v the coefficient of

I viscosity of the fluid, and xl, t are the space and time variabl,_s, respectively.

Here the indices i and j range ever the values 1,2,3, and, in the usuat tensor

!
notation, a repeated index indicates a summationover that index. Dil'Corentiating

J Equation (2.1) with respect to xi, and using (2.2), we obtain the equation for

i the pressurein termsof the velocity:

I az (uiuj). (2.3)_P = "Pax_----;
, j

!
If wenowwrite the pressure and velocity as the sumof mean 'and Fluctuating

partst i.e.0

ui = U. + 0'!m '

l P =P+_'

IT
3
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J where

il u+.<u+>
t p = (p)

are the m6an quantities (th +brackets ( ) indicate an ensembleaverage or,sin ;:+

I
we are considering a processwhich is stationary in time, an equivalent time

I average). Substituting (2.4) into (2.3) we obtain

v2P +_72P' = - P ax._)x"-'_,UiU" + 2U.'_'. +'_'i " (2.5)j sj

| '+

i Taking the mean of both sidesof (2.5), and noting that the mean of any floc-
tuatlng quantity is zero, we obtain the equation for the mean pressure:

!
[ v2P=- Pax_j ui�<_i_i> ' (2.6)

where we have assumedthat the processof differentiation and taking the mean

commute. Subtracting (2.6) frcm (2.5) yields the equation for the fluctuating
pressure:

[

I] We now drop the tilde notation, and for the remainder of the paper the symbols p

_ and ui will denote fluctuating pressureand velocity, respectively. Equation

(2.7) then becomes

li
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[2U.u.+u.u.-<u >] • (2.8)V2P : "P _X. aX. I J ._ J iuj
t 11

t

Now the equation

[ where f(_') decays to zero sufficiently rapidly at co, hasthe solution

_. where d_" -- dyI dy2 dy3 and the i.,#egral is taken over all space. (Herr, .'_d

i in the notation which follows, a syr: tenoting a vector quantity is wr:_t_:.

with t!_e arrow above, wFile the same symbol without the arrow derote: '

Ii length of the vector, e.g., /

[ _ -- (xt , x_,×3)

I

!
Also, sometimes (_ + x2 + x2)½ is written as WI .) Then, assumingthe2 3

turbulent velocity is zero outside some finite region, the solution to (2.8) is

j

v 1

! !I

l
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_,J,,;%

I_°-_'1-' .dy-*' (2.9)

It follows fr'_rn(2.9) that

1;_" ay?yj 2Ulu.i , j

_ [ ] d_d_", (2.10)ayl_Sy_ 2Ul_ui + ul_u_ -(Ul_U _) I_'-_'1-'Ir'7'l-'

where u., = ui('_,t), u:,= ui("_ ',t'), etc., and the indices k,l range over the

values 1, 2, 3. Taking the mean of both sides of (2.10), and neglecting third

order means(see Batchelor2 for a discussionof this point) we obtain

i-II=-_'1-'1_'-_"_7_7' <2.;, ._
J

Utilizing the fact that the mean and fluctuating velocities each satisfy the con-

tinuity equation, and taking the differentiation outside the brackets, (2.1 I) can i
|
i

° i
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be written

/I au.au_
<p<_,t)p_x;t')>-P' 4 ' u_>+

(- )Iay?yi_y_N <ui_ju_u_> - <uiuj><u_u_>.Y

I_-_1-'Ir'-_"l- d7tiT'. (2._2)

The first term in the integrand on the right-hand side of (2.12) representsthe

k
contribution to the pressurecorrelation due to the interaction of the turbjl_nce

T
__ with the mean flow, while the second term gives the contribution due to the

_- turbulence-turbulence interaction. Denoting these terms by(p(_";t)p(_",t')_M

ond<p(_',t) -" ' ,p(x ,t)_T respectively, we have
F"

<p(_',t) p(_",t')) = < px('_,t)p(_",t')_M + <p(_', t) p(_'_',t ')_,,

where

(p(_",_)p(_"', t')'_ :
7M

and

7

• _ _I ::- , ,. --, ................ _1 .......... r _- i._ i

1969016948-011



(p(_',t) p(_",t')_T =i

il
-I _1

' 1_'-71i_"-_-'1 _7_7' (2.,4)
[

The turbulence-turbulence term (2.14) has been examined in detail by

! Kraichnan 3 for the case of isotropic turbulence. Kraichnan, in the same paper,

also ccnsidered the turbulence-mean flow term (2.13) for the case of a uniform

[
mean shear superimposedon isotropic turbulence. In the present work we shall

consider the turbulence-mean flow .term when the mean shear, instead of being

uniform, is confined to one or more planes in three-dimensional space, these ,
planes separating regions of different, but uniform, mean velocity. These planes

are then the shear planes, or shear layers.

We consider first the case of the single shear layer, which we assumeto be :

coincident with the plane x3 = O, and which separates semi-infinite regions of iI o

uniform mean velocity V0 and V!, respectively, in the x, direction. The mean

Ii velocity profile for this case can then be written

7"

!- Ul(x3) = V0 + (V I - Vo) H(x 3), :

i.
where H denotes the Heaviside unitary function, i.e.,

li '

I! 8
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O far x3 < 1i. H(x_) = I forx 3 >I •

If Differentiating with respect to x we obtain :he mean shear:3

I-
alli

_- where 6(X3) refers to the Dirac delta function. Substituting (2.15) into (2.13)!
I

and integrating with respect to the x3 and x3 variables, we obtain the integral

- formula for the _essure correlation owing to the interaction of the turbulence

' with the shear layer:

I. d_"d_' (2.z6)

[
where Rij(y,y') denotes the velocity correlation <ui(Y) u.(y')>, -_= (Yl 'Y2,0), iJ i

""' ' ,0), and dq" = d q I d _2" (We have _leresuppressedthe time !rl = (y'l ,y2

variable by setting t = t' .) The rlght-hand side of (2.16) may be integrated

by parts to yield

_ # [[ a
I

I!
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i
where we hove here set Vm IV ! _V01 .

If If the turbulence is h_'_oge,eous (;.e., R3._ : k33 (_'--_")), (2.17) carl be wr;tten

" <P(x-*')P(_"'))TM 4_

[

I _, '_ -'[
t a -t

412

Now

[ _-c--_.l"I_'-_"1-'=x.-C.-,;_.;_.;
[ le-_-_I' l--e,._l,

" li so that (2. ll_ con be written+ offer .elfin, "E"-'_', .+

<m'__")>,,,,= v_ _(_;)jl-I -"+-TI'I-+'-+-I''++'+_:"(_']_)

I I0

I
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t
!,

Settir_-_' = _" =(0,9,h) in (2.|9)we obtain the formula for the mean square flue-

i tuating pressuredue to turbulence-mean shear interaction at a distance h from

!i the shear layer, whh;h we denote by (pZ (h)_ M ,in the form

• " (_+,,)_'_'(i_.,-I_'+_')_/_,ddV.

The _ integration of Equation (2.20) is carried out in Appendix A. Substituting
that result (Equation (A]6)) into (2.20) we obtain

[
-1 I ]<p'(h)_M = (2,) -!p2Vzf_-lR_({;) (1-2_21/{] ') 1-(1+_2/4h2) -_ +

: el/4hl)_3/l} -"[ (._',/4h')(,+ _. (2.2,)

We now apply the above results to the case when the turbulence is isotroplc.

]'he velocity correlation for this case con be written, following Batchelor 8,

[ Rij('T ) = v' [_-r(81j- rirj/ri)f'(r)+81jf(r)] ,

where v_: is the mean square of any turbulent velocity component, f(r) is the
I"

I longitudinal velocity correlation coefficient for the turbulence, and 8ij is the

_ Kronecker delta. Then

-- [ ' ]

i .

. !1
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Substituting (`2.22) into (2.21) a,d lettillg ,p d_,.otL, lh_.a._jIt, i,_.lwt.t.i; th,. v,.ct,-i

; (`_l,t"7 ) and the .t, axis, we have!

' J(z) : (.2.) ptvZ t.,-z f(_)._ _f.Ct,) (I - 2cesZ_).
0

1

(2.23)

: where we have, for convenience, introduced the notation

i.

:_ -- _/ _ Integrating first with respect to 9!i z 2h and J(z) _pZ(h) M _p2(z/2) M"

gives

[
- J(z) _ z

o

!
_. Noting that

i_ _f(_)• ½._'f'(_)-- _'f( , '

the right hand side of Equation (2.24) can be integrated by parts to yield

3 p2v2vzz-'/® 5/2J(z)= _, [3(I + t_2/z2)- f([)dt;, (2.25)
0

12

......... - ...... .qlpm. m,_,

....... I II I IIII ...... IIIIIIII III I I I III1_.................. "_"_ ............. _, Jill........ --_- m _ _-
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i which can be re-written in the form

co_3 )-5/2
3pZ ._ V_ z (_2 +z 2 f(_) d_ • (2.26)J(z)

l

f We define

.

OO - s/2
= "_3 •l(z) z (_2 +zl). f(_)d [ (2.27)

o

i. so that |(z) is essentially a normalized mean-square pressurefluctuation. Making

- the change of variable _ = zrI , (2.27) can be written

_j.oo 5/z

)_
Differentiating (2.28) with respect to z we obtain the formulas

1

_o _512
| l'(z) = r14(1+ n2) f'(zq)dn ;z >0, (2.29)
T_ " _.

o i

S® _s/l
i l"(z) = ns(1+rl2) f"(zrl)dq;z>O (2.30)i

0
i

!

. Since f(_) is o non-increasing function of _ we must hove f'(_) <_0 for oil _,
i

sOthot, by (2.29), l'(z) < 0 for z > 0. lntegrot;ng by ports in (2.30) we have

13

!
f
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i 1

{

l"(z) 5z-I/m
= ° rl4 (! + r12)"7/2 f'(zrl)d q ; z>O,

! 0
i so that l"(z) >0 for z>0. Also, letting z _ O in (2.28), f(zq)--- f (0) -- I

2
for all rl>0 , so that, carrying out the integration, we obtoln |(0) =-_-; i.e.,

T"

- Note that we cannot obtain ]'(0) and P'(0) by a similar limiting process, since

"" are not integrablo on the
•J. thefunctionsrl4(l+ _)-5/z and rls(l+ r12)"$/2

interval 0 __rI < + ao; however, it can be shown, assuming f'(0) = 0, that

l'(z) and l"(z. _ approach finite limits as z-.. 0. Also, it is clear, by writing
r

l(z)in the form

l(z) z- 4/ao
= _(i + _2/z2)-s/2f(C)d_, 12.32)

_ 0
r

t
-4

that I(z) decays like z as z-.. m; i.e., in the far field, the mean square

.[
pressure fluctuation due to turbulence-mean shear interaction decays as the

" inverse fourth of distance from the shear layer. (The and far fieldspower near

of the shear layer are defined accordlng to whether the distance to the shear

]- layer is much jess than, or much greater than, the correlation length of the

7"

i turbulence. This, of course, is not to be confused with the acoustic near and

f,. fields, since we are dealing here only with incompressible flows.) We can
I

then sketch, l(z) or, equivalently, (p2 (h),_M , as shown in Figure I.

14

i .

I
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+_

ill

. <p_(h)>,,,/_'V'v2

-
¥

Fig. I. Normalized mean-sclu<'repve._surefluctuation due to turbulence-mean

I shear interJctlon v5. distance from shear layer (isotroplc turbulence).

I We can obtain an asymptoticexpression for (pi(h)_ for large h as follows:M

| _o_2 .jWe first take f(l_) _- • , where a is the correlation length of the

i turbulence. Substituting this into (2.32) we obtain

12o

I |(z) z-4f _3 (14- _'/z2) -5/2 -0" _2
= • d_,

0

I

which becomes, ofter a change of voriable,Ill

" 1 -4Sin z+)-s/zl(z) = T (oz) u(1+u/o2 eTM du- (2.33)
0

Now

_o 02z2

/ u(] +u/o2z') "$/' e TM du =/ u(' +u/o2z2) ''5/2 -u
e du -_

0 0 _

J

" /7 _/l .<,u(! + u/olz 2) e du . (2.34)

-o,z2

Then, using o power mr|es exponiion+ we con write

15

1969016948-019



I _zZ °2zZ / 5 .2_2
/ U(1 +u/a2z2)-5/2e-Udu---/ u_t-'-_u/a z +O(a-4z-4))e-Udu

I o o

I = i+ {higher°rdertermsln (az)-'l"

I It can easilybe shownthat the secondterm on the right handsideof (2.34)_1
involvesonly higherorder termsin (az) , so that, for large az,

I
,,, 1

I !(z) = "_,(crz)-4 . (2.35)

I Then since

j 3 Vz
<pZ(h)>TM: J(z) = T p2 vz l(z),

I
we can write, after substitutingfor z = 2h,

I
J - ,<PZ(h)>TM- 1283pZV z vz (oh)- (2.36)

I
for a h large; i.e., for h large in comparisonwith the correlation lengtho_ the

I turbulence.

T
I 16 ;,

I ,!
t

II ...... I II I I III ____ III I I II II 1111111 ........
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I
j 3.0 TURBULENCE WITH SCALE ANISOTROPY

We consider now the somewhat more realistic situatln,1 in which the turbulent

i eddies are elongated in the direction of the mean flow. Following Kraichnan 3,

I we introduce the anisotropic velocity correlation function

t b 8
R(a) _ _) 3(2 _) I il j! -Iii (_i'_' = + - Rij(c_ EI,_,_s), (3.1)

1
where c_> ! is the anlsotropic scale factor and Rij(_) correspondsto isotroplc

1 turbulence. It can easily be shown that R!a)(?) satisfies
ij

ij
a_. = 0 ; also that R!a)(-_) correspondsto a turbulent flow in whichij

the mean kinetic energy density is the sameas that for isotropic case, and also

a flow in which the correlation length is stretched by a factor o_ in the _l

_- direction.
J

!

Now since R..(-_) corre:ponds to isotropic turbulence, we can write
, ! ij

',F> [ ,<qI = vz (81j - _i_J/_2) _" 8iJ "

Then substituting Equation (3.2) into (3.1) we obtain

!

f((_' r' ' )], i- _1 )½ (3.3) ;

17 t
i
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I
i -2 _2 2 ,_2where y2 = 1 - c¢ and = _l + Letting ¢_ be the angle between the' 2"

I

vector (_|,_2) and the _'! axis, and defining X=(1 -y2 c0s2_)2, Equation

(3.3) can be written

K33( i,_2 0) = 3(2+c_l)-iv 2 f(X_) _-_X_f'(X_) • (3.4)

I
Substituting(3.4) into (2.21), andsetting z = 2h as before: we obtain

I

, Jii J(O)(z) - 3pZv2V2 (Xl;) + 12,,(_+<_-_) Tx_r,(x_) (_- 2co;_).

!
i [,_<,+ + + co ,I c3.5)

I w'lere d(a)(z) is the anisotroplc counterpartof J(z). Noting that

!
l;f(x_+-_x_;2f'(x_=

,T
we can useintegrationby partson Equation(3.5) to ebl'sin

' "° IEj(a)(z ) = 3p2v Vz I /

(} 0

(t;i/2zl)(l+ _2/zi)-3/z l;-if(),,_ dl_d,l +

i

18
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i

,+++f=f= -cos2+( 1 +_2/z2) 5/2_3f(;k_)d_d+ (3.6)

i 4.(2+c,2)z4j0 J0

l Making the change of vat;able q = _/z, Equation (3.6) becomes

: :++v'f'7°< f,
l _<:><:>_"<:++>+o+o'-:°°++-<;++>--- j.i
I -Iq f()_z q) dqdq -_

I ,+++f,. [ _=,,]_-- cos2 (1 + q2) f(Xz q)drld + • (3.7)

I 4.(2+ o_z)4 ¢ rl3 :
i
J

Letting z -_ O, in (3.7) we obtain

| jlO)<o_: 3p'V'v', !..
2(2 + _Z)

{ or, letting _pZ(h)_ M) denote the meon square fluctuating pressureat a distance

h from the shear layer for the anisotropic case_ we have

<++>><_>:--3 ' _,V,v,2 + _z _ " (3.8)

i Upon comparing this result with (2.31) we see that anisotropy results in a

l reduction of mean square fluctuating pressureat the shear layer.

l 19

i .

I

III F i ,i ,,_r _= _..--__ if"......... 1 ............ III I I IIII IIIII ............................... : ........
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In order to obtain far field results for J(a)(z) we first assume

_zCzF(_)= e

so that

Using a procedure s;milar to one used previously (see Equations (2.33)-(2.35)),

the integrcndsof Equation (3.6) are expanded in Ix_ers of _/z and terms of

order (1/az) 6 and higher are discarded. Then after integrating with respect to

_,. (3.6) becomes

I fZw

... 3 pZvZV'_ 3-- _j ] +2c°sZ ? d_- (3.9)d(a)(z) = g o4z4 2+ c_z (I -)'Zcos2e "
0

The integral on the right hand side of Equation (3.9) can be integrated by

meansof tables, with the result

+

j(°)(z) _,,., 3 K (a) , (3.10) i
= 8 a z t

+
i

for oz. large, where

K(o+) = 3o+(I+3_) . (3.11)
4(2 + a z)

20

I IfI lilt .................. I + + 7_+Y+Itl+ ..... .............................
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Since

j(a)(z ) = <p_t(h)_T(a)I
Equation (3.10) can be put into the alternate form

(a h)4

1
for large qh, where h is the distance from the shear layer. This is to be

I comparedto the isotropic result (Equation (2.36)).

Note that K(cx) is monotonically increasing with c_, i.e., for mean kinetic
t.

energy density fixed, the mean square pressurefluctuations due to turbulence-

mean flow interaction at large distancesfrom the shear layer increases with •

! increasing anisotropy of the turbulence° i

! '

21
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4.0 DOUBLE SHEAR LAYER

It is appropriate here to consider the case of the double shear layer, since, as

will be seen, the effect of multiple shear layers on the mean square pressure

fluctuations is not a simple superposltionof the effects of the individual shear

layers. Also, the resultsobtained ;_ere will be of use in the discussionof

boundary layer turbulence.

The _mmetric double shear layer considered here is characterized by a region,

sayl_l<_a in xI- ;_2- x3 space, in which the mean velocity is uniform and

is equal to V0 in the x I direction. This region separates two semi-infinite

regions in which the mean velocity is uniform and is equal to V i in the x 1 i

direction. The planes x3 = + a are then the shear planes.

The procedure is similar to that of Section 2. We first write the velocity
!

profile in the form i

Ut(_3) : Vl + (Vo- Vl) H(x3 +a)4(VI- Vo)H(x3- a). t

I

Differentiating, we obtain the mean shear: I
i

,u, [ ]-- (v-v o) s(xs-a) -6(xs+a) •

Substituting the expression for the mean shear into lquutI_ (2.13) we obtain

22
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i
!

| <_')_'_),_"irjj (a_a_,_+'w;)l-_--_+l-'F'--_:I-'-

J a_e3 ..__.
33 _ <���Œ�P�__+1-,!-_,__, I-' -

|
_ _ _' ð�Ü�-_--_I-'F_ I-'

!

| __:_-)1_--_I-'1-_,-_1-'/ _,, (4.1)aqI aqI'

1
where

I = (nr %),

I q+ = (nl,q2, a),

q--.= (q,, %,-c,),

{ ,, = %,_),
[ = ;,o),_'L (n ' n,'

I

_' = (q;' _2"°)' i
[ - i

and V = IV 0 - Vll as before. Integratingthe right hcmdsideof i

[ (4.1) bypartsyields I;

[ 23



p_V'I'/"_R _ _,)a_,T__,-,a
i <_,_")L:+-+--jjI_"+'_++",i.+l__l-+'--+;i- -I

I
,.,, ,-.-,- -,., . a -.,.,. --. , - I a ._,., _..., .- I

| .++,.7_..+,_x-.__ix-.+i+

I R,(+-,",'-)a,.,_lx"r'-I a,.,,_F'-"I_°_"
I (4.2)

Ifwe assumenow that the turbulence is homogeneous, we can make changes of

variables in (4.2) sim|lar to those of Equations (2.17) - (2.19). Equation (4.2)

I then becomes

I <,_.)p_,)>,:

I -- e x,- _I- +, xl - +:. -- "+'

_I/= (+.)I _._. _d+d+-| " "s F"-':o++l'I+'-++I+

+, j- +f x,-,,-+,x,-+,,:,+ +m l-+-c+-LI "-"'+'+ " +Ix -+-I
F
' +

++ /./x,_,_,, ,,+.,,+_.++ +t (c i+...+._..+.+i+[+,...i+l+ °
++
!
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I

I _(_ _'-__F4"_, <,._>
I where

o - (_,_z,°),

! --
�=(_i'_2'2a)'

= , ,-2a),

i "_+ = (_,s'_,ta)j,

_ = (_l' _2) '!
= (_t" _2)"

I
To obtain the formula for the mean Nuare pressureat a distance h from the

i x I , x l plane we set x = x ' = (O,O,h) in (4.3) wlth the result

i:

i t _ __ --
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i f ..... ,, --
+ Z+(h+a)Z3/2 3/2 clt_dg+

I t_2+(h- a)2

_3 +_j2+(h+,) 2�(h �����´�3/2
!"

(4.4)

i In examining the Fourterms occurring on the right hand side of (4.4), it is seen

that the two term_ involving _0 are of the same form as that of the single shear

Ic_,er (Equation 2.20) and therefore give the contribution to (p2 (h)_ M which

would be expected if the _heor layers acted independently. The two terms :
.-,4D

I involving _+ and "__ give the contribution to (p2 (h)_TM owing to the

correlation between the fluctuating pressure ,Jue to one sheer layer and the

fluctuating pressuredue to the other shear layer. We shall refer to this effect

_r
_l as interaction between the shear layer. Then, in general, the mean square

fluctuating pressuredue to the interaction of turbulence with mean shear in
&.

multiple shear layers is not o simple superposltion of the contributions of the

1" shear layers acting independently. It is, however, clear from Equation (4.4)L

that if the distance between the shear layers is large in comparisonwlth th_

correlation'length of the turbulence, then the terms In (4.4) correspondtn9 to

interaction between the shear layers can be neglected, since then l_l(_,) and

. Ru(_..)wi, be,_,,.ilIn,:ompc,,'i,.nwith_1Co).i. thi,c.,. <_;(h))TM,:.n i
be constdereO m a supmpodtion of the effects of the shear layers octlng

: Independently.
i
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For the case in which the distance between shear layers is of the order of the

J correlation length of the turbulence, the four _ integrals occurring in (4.4)

can be evaluated using the formula derived in Appendix A. We shall consider

J here the case in wlllch the distance from each of the shear layers to the point

i x is large in comparison to the distance between the shear layers, i.e.,

Ihl >> a. Then we san replace (h* a)2 by h2 everywhere in (4.4) without

t introducing signlCicant error, and, using (Ai6), Equation (4.4) reduces to

I
¢1/4h2)-3/2

I
d_ • (4.5)

1 I

Note ol_ that by _lmtttuilng a foe h oel the right hand slde of (4.5)0which
is eq_.dvaloettto _tt|ng h _ 0 in (4.4), we obtain the exact formukl c,v the

t mean Ulunurefluctumln g pee_re at a point mld_y between the _r I_jeeru.

l Aliumi_9 that the turt_,lll, r_e ti twtmpic wt con wrttit

- ]t tl (loI ._ j ¢)+ ¢f,(¢) ,il

]
,i

ill
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l so that, letting b = 2a be the distance between the shear layers, (4.5) becomes

i <p2(h)_TM= -]p2V2 v _-2 f(O+___f,(_) (I 2 -

!
i] I- ' ¢-'[_" (1+_2/4h 2) :_ +(_21/4h2)(l+_/4h2)-3/2 de- 'n- p2V2v f(_+) +

!
i

I The first integral on the right hand side of (4.6) is, except for a factor of two,

I identical to one encountered previously (see Equations (2.23)-(2.25)), and so
we c_n write

1
- p2V_ _-z f(()+_-(r'(_) (I- - +I

ao

I
I ° (4.7)

where,m before, z = 2 h. Writing the second integral on the right hand side

of (4.6_ in tem_ of polo, coordirmm m in (2.23), and carrying out the

I integmtlon with re4pect to the o_lular coordinate, we obtain

tl

,
28
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/r +, ]p2V2v2z-2_ r(_+)_-_+(1-b2/_+_)f'(_ z2)-_/_
L.

o

., Making a changeof variable, we can write
-!

[ Io2V2_z- _ (_)+__,.,- o,,_+,r.{_ ¨�(_+d_--
0

Noting that

1 d [1 (_,2_b2)f(O]i- _'F(L")+._.(_2-b2)f'(_) = _L_

we can integrateby partsto obtain finally
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i Q.)

i _- - - _f(_) d_ (4.8)

i Substituting (4.7) and (4.8) into (4.6) we have

I ,!r<P2(h))._-- _ p2v2v2z (_+ f(_)d_ -
I (Jo

- + _f(_)d _ • (4._')

where we have assumedthat Iz I >> b. The first term on the right hand side of

(4.9) is just twice the mean square fluctuating pressurefor the case of a single

1
shear layer coincident with the x! - x2 plane, and gives the contribution to

I _p2 (h)_TM due to the uffects of the shear layers acting independently. The

second term gives the coni ibution to (p2 (h)_ M due tc interaction between theJ
shear layers. This term is n_-_jative, i.e., in this case interaction between the

I shear layers tends to reduce the mean square pressurefluctuations.

I As noted previously the exact formula for the mean square fl,ctua_ing pressure

at a point midway between the shear layer, i.e., for h = O, is obtained by

replacing h by a everywhere in the right hand side of (4.5), i.e.,

I.

i
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!

I ' I ] t' (l_2_l/_jz) 1-(l+_j_4aZ) -_ +(_zw/4a2)(l+_jZ/4aZ)-3/2 _-2d'_.

(4.lo)

I For isotrop_ct_arbulencethen we obtain after replacing z by b everywhere in

(4 9)

!
oo

3 p2V2,2 lb/ _3 2 -5./2] <p'(o)>: _ (_ +b,) r(_)d_-
0

/° 1t b l_-4(l_2-b2)f(_) d_ . (4.11)

I
I Again we see that intercctlon between the shear layers tends to reduce the c_

• mean square fluctuating pressure.
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i 5.0 APPLICATION TO BOUNDARY LAYER TURBULENCE

The results of the preceding sections can be used to give rough order-of-

i magnitude estimates for the mean square f_uctuating pressureowing to
turbulence-mean shear interaction in a turbulent boundary layer. The pro-

cedure is to first approximate the flow near the boundary by meansof a mirror

flow model similas to the one described by Kraichnan 4. The boundary layer is!
then approximated by a shear layer lying at somedistance from the boundary

I which is lessthan the boundary layer thickness, and across which the mean

i flow velocity parallel to _he bc4jndary changes abruptly from zero to the external
flow velocity. In other words, the mean shear, instead of being distributed

I over the boundary layer, is assumedto be concentrated in the plane of the shear

i layer.

-x plane andWe assumethat the boundary is coincident with the x I 2

construct the mirror flow model as follows: Assumeu.(_',t) represents the !I

I turbulent velocity corresponding to homogeneousturbulence. Then, follow-

ing Kraichnan, 4 we define new coordinates "_* by

| .
X _r = X X * ----x* = x , , -x (5.1)

1 e 2 2 3 3

and a new velocity field v.* (x,t) by

!
! : +
!

32
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I u;(-_',t) : 2-½ [u3 (-_,t)- Ug(-_,t) 1

1 Then the velocity field represented by u_ _',t) has mirror symmetry about

I the plane x = O. It is easily verified that u.*("X",t) satisfies the continuity3 I

i equation
au.*

!

"t 8×.1 = 0

p. ovided u.('ff, t) satisfies it, end a_so that u.*('_,t) o_"_oximates the flow n_r

' ,
the boundary in that u.* (_',t) and all its even derivatives with respect to xi 3

= O. It is also easily verified that the mean squarevanish on the plane x3

values of u.* far from the wall tend to the values for the homogeneous field.
I

* and * are twice the
At the wall, however, the mean square values of u! u2

I values of the respective homogeneouscomponents_ whereas the mean square '

value of u* at the wall is zero. (For a more detailed discussion of the mirror
3 !

?

flow velocity f_eld, see the above-mentioned paper of Kraichnan's.) .Then,

1 defining R.*.(_",y"_)to be the velocity correlation for the mirror flow, we have,
" Ij

from(5.2).

1

-,_ R_(_',_ - g R N-_ - R C_*-_ -R _-7.) +_ _ -7*) (5.3) i

r: The mean flow distribution is taken to be a shear layer at x3 = a, with the

mean velocity zero for 0 <_.x3 < a, and equal to V for x3 > a. Reflecting

' this flow in the boundary plane we obtain the case of the double shear layer

Identical to the one discussedin the previous section. We can then obtain the

33
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I
I

formula fo, the mean square fluctuating pressureowing to turbulence-mean shear

!
interaction by substituting the mirror-flow velocity correlation given by (5.3)

I into Equation (4.2) of the previous section. Doing thist and noting that

I i
R33(-_, q+), we obtain

i
2v2

(._, = p- w ---_,

R,,c_+_,)+R,,_-n) Ix-n+!±1_--_+1-+
ax'

! '
a ,.. _° !-! a _.... i-, a _. _..-,_ ,

l _,x-,_., _x,,-_"_-' +_Ix-'_+l,,x,,r*'<l-+

I -_,I_'--_I" _'-'-"']_ __1x - n+I a_'d_' • (5.4)
, i_ I

I
Making changes of variables similar to those of Equations (2.17)-(2.19), (5.4)

I becomes

1969016948-038



I
i x,-_,-_, _i-_, &-+I I_°_o-_-I_ F'-_-

I _l_.+___i3 [._,__.l,3 d_+

1 s'_-_- _+1_I-_'-7"+1'

where _0' t>+, _ , _, 4, _+, _ are as defined previously. Setting

"_ = -_" = (O,O,h) in (5.5) we obtain the formula for the mean square

I fluctuating pressureewing to turbulence-mean shear interaction at a distance

t "h from the boundary:

T,_._ >. : 2R %) - _3¢_)- 1_3(_) '<P'(h)'M 8J JL _ -
|
_._

:. +-Tp+(h_o)23D +(h_a)23# clt_+

i ,, d_+ _
!

1
1
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d{+

f 1
i (5.6)

Setting h =0 in (5.6), and using (A16), we obtain the formula For the mean

I square fluctuating pressureat the boundary owing to turbulence-rn_an shear

1 interaction, whlchwe denote by !pzwttm :

/e -]I (P'>TW = _-IpZVZ 2R33(_'_o)-R33(_-R33 (_-) "M

! I - "(_=,/o=)(l+_o=)"3/=_-=d_ , (5.7)
!

[
/ 2 tT given by (5.7) is just twice the meanwhere b = 2a. The value of Pw m

.V

square fluctuating pressureat a point midway between the two shear layers for

the case of homogeneousturbulence, as given by Formula(4.10). Then for the

I'_2 )T iScase in which R33 in (5.7) correspondsto isotropic turbulence_ ' w M

!i equal to twice the value of _pt(O)_m given by (4.11), i.e.,

il =
_ 6

I
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I
I CO

b/ _-4(_2-_2)f(_)d_t , (5,8)

t where v is defined as before.

t In order to obtain estimates for tpL_ for an actual boundary layer flow it is'TM
necessary to relate the parameters appearing in (5_J, i.e., V, v, b and the

-,
correlation length a of the turbulence, to t!,: boundary k,ver-. flow

I parameters; namely "r0 the wall shear stress, c...d U the Friction velocity,' .f

where U2 = "r0/p. We first assumethat the mean veloci:y _.:_rlbuHon ;n the

l boundary layer is of the form

!
Ul(X3) = V(1 - e-J3x3). (5.9)

where V is the external flow velocity. Differentiating (5.9) we obtain

S(x3) -- S0e'PX3 (5.10)T

where S(x3) is the mean shear, and So = 13V is the mean shear at the wall.

[
We now choose a, the distance from the wall to the shear layer, to be one-third

Ii the distance from the wall to the point at which the mean velocity is approx-

, imately 95 percent of the externol flow velocity. Accordingly, by (5.9), we

choose 13a = 1, or (3b = 2. Kraichnan4 statesthat (5.10) givesa reasonable

i' approximation to the mean shear h, an actual turbulen ound_ry layer, at least

" in that region outside the laminar sublayer which is expected tc give the maj_;."

l 37

f

- - __ ' ......... Ml ............ ii,ll ................. m,................ , .... L. I I IIII ..............

1969016948-041



i
contribution to the pressurefluctuations, if SO and 13ore chain so that

I SO : 12UTo and 13= o. Also, o reasonable vo!ue of v, occo_tlng to

I experimental evidence, is 1.5Unr . Then, since SO = 13V, we have

I V = 12U , ab = 2, v = 1.5U T. (5.11)'!"

t Substituting (5. !1) into (5.8) we obtain

I [/"o

I b i (-'((2- b') f(() d( j (5.12)b

I Since b is twice the correlation length of the turbulence, the second integral

[ 2_2on the right hand side of (._. 12) can be neglected. Then toking f(_) = e "° '

and setting ob = 2+ (5.12) becom-._, otter o chenge of varioble,

[ ,,..),,._--.,,_ u: ,,<,+e>-,,".-,e,, . <_.,_>
[

The integmi occurrlng on the right hand side of (5. 13) can be evaluated approx-

tl imotely by various met|_-,ds. One way is to fiat observe that

[
i-- r13(l+rll)'Slle'lq2drl _ q3(l+qi)-51i •-4q2 dq.

!i 38
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I

J We con then opproxlmo/e e"4rl2 in the interval 0 < rt <. I by the fun_tlon

4

1 - 2rl z + r1 The ,esulting integral can be evaluated by meant of tablet to
yield finally

I

I P' _ " _ 4.,4pu__ 4.4,o• is.l,,

In view of the many assumptionsend approximations made in the above analysis,

I Equotlon (5.14) should be considered only a crude, o-_er-of-mognltude estimate

of the root mean square fluctuating wall pressure. However, it is of interest to

no*e that the numerical factor 4.4 appeorlng in Equation (5.14) ogre_i

reasonably well with other publisht,_ ,esult'j; e.g., Kroichnon4 given a numerical

factor of 6, while resuits obtained by Lilley 5 indicate a numerical factor of 3. ].

Experimental resultsof Bull7 indicate the numerical factor generally lius between

2 and 3.

T
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J 6.0 CONCLUDING RE_RKS

Although in the peeceding sections emphasiswas placed on findir_g the mean

sct_x_eflucluat;ng pressure ('P__M , tF_ resultsobtained can also,be used to

J calculate the t_,o-point pressurecorrelation under various conditions; e.g.

I formula (2.17), gives the two point pressure rorrelation function owing to the

;nteract;o_l of (not necessarily homogeneous)turbulence with a single shear layer,

I while (2.19) gives the same result for homogeneousturbulence. Analogous

I results (formulas (4.2) and (4.3)) are obtained for the double shear layer. The

case of homogeneousturbulence with scale anisotropy can be included by _ubst;-

I tuting the expression for the velocity correlation given by Equation (3.1) into

I (2.19) and (4.3). It should also be noted that since the analysis given here does

not involve the time variable explicitly, the effect of time difference can be

I included in the above-mentioned pressurecorrelations s'mply by assumingthat

I the velocity correlation Rij appearing on the right hand side of the above-

mentioned equations is also a function of the time difference.

1
As was seen in Section 3, departure from isc_ropyresults in a decrease in the

I
mean square fluctuating pressure in tl_enear field of a slngie shear layer, whereas

I in the far field, onlsotropy results in on increase in mean square fluctuating

pressure, in view of Kmichnon's results far the interaction of turbulence with

t uniform mean shear3, the near-field effects of onisotmpy are not unexpected;

t however, the I_ysical interpretation of the difference in near-field and ,_r-field

_ effects of onisotTopy abtained here remains unclear.

i 40
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I
I

Results obtained _,_S_ct:un 4 for the case of the double shear layer indicate that,

I when the separation between the shee.r !ayers is of the order of tk,e correlation

i length of the turbulence, interaction between the shear layers (i .e., the effect
of correlation between the fluctuating pressure due to one shear layer and the

fluctuating pressuredue to the other shear layer) is _ignificant and results in a

decrease in the mean squarefluctuating pressurecompared to the value which

I
would be expected if the shear layers acted independently. This decrease is the

result of the io<r_icular velocity profile chosen in the .... other than being an

I intrinsic characteristic of multiple shear layers. The configuration chosen has

mirror symmetryabout the x! - x2 plane; i.e., UI (-x 3) = U! (x3), so that the

I mean shear is anti-symmetric about this plane. Thus, in the interaction term in

I the expression for the mean square fluctuating pressureor pressure correlation (see
(2.13)), the product of the mean shear at a point on one shear layer with the

! ,mean shear at a point on the other shear layer is negative. If the configuration

is chosenwith the mean shear having antl-symmetry about the x| -x 2 plane, so
that the mean shear is symmetric, then ,nteraction between ,he shear layers will

result in an increase in mean square fluctuating pressure.

J Order-of-magnitude estimates obtained in Section 5 for the mean square fluctuat-

ing wall pressure in a turbulent boundary layer showreasonably good agreement

with other published results. Although this agreement ;s to a certain extent for-

I tuitoust in that the final result is dependent upon certain assumedparameters

I such as the distance from the wall to the shear layer, it is nonetheless encouraging

since it indicates that refinements of the method given in the text might well

! 41
f
I

..... •r, I-:=? _' " II I III ...... 111111 - -_2_ ;_ .N_

I

"19690"16948-045



I
result in even c!oser agreemont with other resuitsr both theoretical and experi-

I mental. Such refinements might include an a.'tempt to -_'oximate the mean

J velocity profile in the boundary layer by several shear la/ers, instead of one as

was done in the text. (it is clear, in fact, since any piecewlse "ontinuous func-

J t._n can be approximated arbitrarily closely by meansof step functions, that any

j mean vcioclty profile can be approximated as closely as we please fly a Finite

number of shear layers. More complicated velocity profiles, such as the one

J which exists near the exit of a jet, might be approximated using a combinatlo_ of

shear layers and uniform mean shear; e.g., the velocity profile

I = + olx3; x 3 < 0Ul(x3) V1

I Ul(x3) =V +_x3; x3 > 0l 2

I where V i _ V, gives a shear layer at the plane x3 = 0 superimposedon uniform

mean shear _ .) It should be noted, however, that the degree of computational

J difficulty will increase roughly as the square of the numberof shear layers chosen,

J since interaction between the shear layers must, in general, be considered.

!

T
l
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APPENDIX

I it is c'_irobjective hereto evaluate the integral

I _m _I+q

[O--i " -_

-" (_, _2 -where _'= (0,0, h), _ - , , 0), { = (_!' _,0). Equation(A1) can be written in the

i alternate form

[0 = d/_ , (A2)., _/'z

i <_'+_'> _'+i_' €�x�'_'j'

where _ = , F,l), I_= (1_1c ). It is conven!entto considera somewhatmoregeneral

formof (A2); namely

i

| _ _'3-o,b):l _'+_' _'+c, _• d _ (A3)

c_+l_+_l'P'_+I_+_I'P' '
I
tr where -_"=(rll , ,li), and a, b>O. Then
l

[ I0= l(0,1_;h, h) • (A4)

[ We nowproceedto evgluate 1('_, C; a, b) _si-,g= methodslmllor to that given by
[roIchmln 3, whllh Is _led on I methodof Fevnn_nt. We first write (A3) In the form

,_ ,,

iN, __o,b)-- _ 1 __, 1_ ,
[

: 45
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I

| whe,er--(b2 lZ)½, r'-(_ _2)3/_.Now

!
/a_l-_l (-_l)dT = Iim / 82 t_r,)d_"

A

|
where A is any finite area in (4! , _) space, which in the limit as A-.co is to innlude

" I all of (_I' _2) space. Then, setting

I
_. i A rr*

;' I we have
L

__ I (_-- ,im 8Z|A_" I _; a,b) = •

I
Making the change of variable'_ = _+q , and setting z = rI - _, (1 6)

•_ I becomes

rr _

where r (b2+ u2)½, = I z-'J2)½, = •= r' (al + -_" - and A' A + _ Then $,_tting

I_ _ : IA("_',_) wehave

i IC'_',i_;a,b) = - Ilm I_('_) , (A9)

]

= 11 iii .....
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where

A'

I
Util;zlng the identity

t
[°1 2 d'r

re _ r'2+,_

_. we can write

ff°I "_: _,_;__ • _A,o)
A' o

;.. |
Substituting for r and r', and lnterchongiqg the order of integration, (A]O) can be

" 1 written

__z_re !@,,0 A' -_. l+T2 j +, +_ z2I + "rz (1+ "r2)z

[
If we now choose A' to be o circle of rod;us R centered at _/(1 +_r:) we can carry c,ut

the integration over A' tc obtain

o i
;
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I
I

where C2 a2+ b2"r2 "r2-_ + z2 . Now the first term on the right hand side of

I 1+ T2 (1 �T2)z

I (A12) will give no contribution to i("_, _ ; a, b) since its derivative with respect to
z is zero. Also, the secondterm on the right hand side of (A12) will not contributeI

| to i (-_, [; o, b) since it vanishesas R_,- co. Equation (A9) then can be written

82 co-" + z2 d'r . (A13)

I _Z,Jo _i_;_ <,+,,>,,+,,
I The right hand side of (A13) can be evaluated as follows: First differentiate once under

i the integral sign with respect to z I to obtain

-" a /¢o "r2 d'r . (A14)| 1_,_:;o,b):4_,,_, (!+,2)(o2+b'-,_)+,2z_ I+, 2
0

I
The integral on the right hand side of (A14) can then be evaluated by meansof contour

I integration to yield

/_o _r2 dl- =
14"_r2)(a_+bZ_2)+_:z2 I+T20

I +[<°'+ ]+I ;

!

[ ;so that, differentiating again with respect to zt, (AI4) becomes _

(

[ i

't" I
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I
z_',-E;a,b)=2_="_(1- 2z2/=2){1-I

I
1
J (AZS)

J where'_ =_- l;. This is the desired expression for I(_', _ ; a, b). Then setting

i a = b = h and _" =0 in (A15), we have, from (A4), the desired expression for 10:

I '0:_,,"{(,-_,',_,')[,-(,+_,_')-_]+

1
!
|
!

.

I
49
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